Stat 534: formulae referenced in lecture, week 4:

Profile likelihood, Lincoln-Petersen estimator, extension to more than 2 sampling occasions

Profile likelihood: another way to compute a confidence interval

- The asymptotic confidence interval, $\hat{\theta} \pm z_{1-\alpha/2} \sqrt{\operatorname{Var} \hat{\theta}}$, assumes that $\hat{\theta} \sim N()$
 - Theory \Rightarrow the distribution of a mle, $\hat{\theta}$, converges to a normal distribution as the sample size increases
 - Doesn't \Rightarrow the distribution is normal when # observations is small-moderate.
- Profile likelihood intervals do not rely on asymptotic normality

Relationship between a hypothesis test and a confidence interval

- A useful applied statistics reminder: holds for any test and associated interval
- Consider a 1 parameter model, e.g. Y Poisson (λ)
 - have mle, $\hat{\lambda}$, e.g., 16.4 for the moist woodland oaks
 - want to test $H_o: \lambda_0 = 15$
 - Likelihood ratio test statistic is $C = -2 \left[\ln L(\lambda_0) \ln L(\hat{\lambda}) \right]$
 - Reject H_o , $\lambda_0 = 15$ at $\alpha = 0.05$ when C > 3.84
 - $-\ln L(15) = 1.27$, so accept H_o , p > 0.05 (p = 0.52, if you want to know)
 - What about other null hypothesis values?

λ_0	$\ln L$	\mathbf{C}	
16.4	-3.47	0	accept H_o
15.0	-4 10	1 27	accent H
10.0 14.5	4.10	2.21	accept H_o
14.0 18.5	-4.00	2.09 2.48	accept H_o
10.0	-4.71 5.94	2.40	accept Π_o
19.0	-3.34	3.73	accept H_o
14.0	5 10	2.00	
14.0	-5.42	3.90	reject $H_o, p < 0.05$
19.5	-6.08	5.21	reject $H_o, p < 0.05$

- illustrated in profile1.pdf
- 95% confidence interval for λ is all the λ_0 values for which test $\Rightarrow p > 0.05$
- Need to find the λ_0 values where p = 0.05. Those are the end points of the 95% ci.

$$\begin{array}{cccc} \lambda_0 & \ln L & C \\ 14.015 & -5.39 & 3.84 \\ 19.04 & -5.39 & 3.84 \end{array}$$

What about models with 2 or more parameters?

- Still want a ci for one parameter
 - Aside: generalizes to confidence regions for two or more parameters simultaneously
- Example: redpoll data, 2 sampling occasions, same capture probability each time, p
- illustrated in profile2.pdf: lnL as function of (N, p) for redpoll data
- mle's are $\hat{N} = 90.5, \, \hat{p} = 0.32$
- want ci for N
- Again, start with a test
 - E.g., test $H_o: N_0 = 80$
 - This null hypothesis says nothing about pneed to compare $\ln L(N = 90.5, p = 0.32)$ to $\ln L(N = 80, p =??)$.
 - Need to find the mle for p given $N_0 = 80$.
 - Sometimes have equation for this, usually have to numerically optimize
 - Test statistic is $C = -2 \left| \ln L(N_0, \hat{p} \mid N_0) \ln L(\hat{N}, \hat{p} \mid N_0) \right|$
 - Null hypothesis has 1 "free" parameter, alternative has 2, so C has 1 df
 - -95% ci: Find the set of N_0 values where p > 0.05, i.e. C < 3.84/2

Connections between profile likelihood intervals and asymptotic normality (Wald) intervals

- Everything below is for 95% ci = $\alpha = 5\%$ test, generalizes to other %'s
- Wald interval is based on a Z-test: reject $H_0: N = N_0$ when $Z = \frac{\hat{N} N_0}{\sqrt{\operatorname{Var} \hat{N}}} > 1.96$
 - Assumes that \hat{N} has a normal distribution
 - Equivalent to a profile likelihood plot that is quadratic around \hat{N}
- Profile likelihood interval is based on a likelihood ratio test (LRT)
 - Does not assume a distribution for \hat{N}
 - The Chi-square distribution for C in a LRT is an asymptotic result
 - But practical experience + theory \Rightarrow the Chi-square assumption is appropriate for much smaller sample sizes than the normality assumption

What if we used $\log N$ as the parameter, not N?

• lnL is unchanged.

- Invariance property of mle's:
 - lnL unchanged for a general transformation of parameters, not just log
- Profile likelihood plot usually looks different
- But, profile likelihood confidence intervals are identical
- Asymptotic normal intervals are not

Importance of number of recaptures

- Define $\mu = \frac{n_1 n_2}{N} = \mathcal{E} (m2 \mid n1, n2)$
- c.v. of $\hat{N} \approx 1/\sqrt{\mu}$
- plug-in estimate is $1/\sqrt{m_2}$

More than two sampling occasions:

- Improves precision
- Allows considering multiple models for capture process
- Consider 3 occasions. Data can be summarized as $2^3 = 8$ possible capture histories
- Do not observe the NNN history.
- Goal will be to estimate n_{000}

r	Γime	Э	
1	2	3	# animals
Υ	Υ	Υ	n_{111}
Υ	Υ	Ν	n_{110}
Υ	Ν	Υ	n_{101}
Υ	Ν	Ν	n_{100}
Ν	Υ	Υ	n_{011}
Ν	Υ	Ν	n_{010}
Ν	Ν	Υ	n_{001}
Ν	Ν	Ν	n_{000}

- Extends in obvious way to more than two capture occasions
 - -2^k possible histories for k occasions
 - Don't know # unseen, $n_{0\cdots 0}.$ All other counts are observed.

Otis models for capture process in a closed population:

- Named by Dave Otis in his PhD thesis. Published in a wildlife monograph.
 - Dave was ISU Coop unit leader before Bob Klaver, late 1990's? to mid-2010's?
- Three issues that could be included in a model for capture probability
 - All concern p, the probability that an individual is captured on an occasion
 - T: Variability between occasions (times)
 - B: Behavioural variability
 - H: Individual heterogeneity
- Individually or in combination
- Models named by subscripts
 - M0: same capture probability for all sampling occasions
 - Mt: capture probability differs between occasions
 - Mb: behavioural response: capture probability differs between 1st capture and subsequent ones (trap happy / trap shy behaviour)
 - Mh: individuals have different capture probabilities
 - and all combinations, Mtb, Mth, Mbh, Mtbh
 - Heterogeneity between individuals (model names with h) makes life very difficult, will discuss last

M0: constant capture probability

- lnL depends on 3 summary statistics
 - t: # sampling occasions
 - n_{\cdot} : total number of captures $= \sum_{i=1}^{t} n_i$
 - $-M_{t+1}$: total number of marked individuals after the last sampling occasion = total number of animals seen at least once (perhaps more often)
- the important part of the log likelihood depends on these quantities (the sufficient statistics), not any additional details, e.g., individual n_i

 $\ln \mathbf{L} = \log N! - \log \operatorname{constant} - \log(N - M_{t+1})! + n \log p + t N - n \log(1 - p)$

• constant depends on the data, not on any parameter