
Stat 534: formulae referenced in lecture, week 4:
Profile likelihood, Lincoln-Petersen estimator, extension to more than 2 sampling occasions

Profile likelihood: another way to compute a confidence interval

• The asymptotic confidence interval, θ̂ ± z1−α/2
√

Var θ̂, assumes that θ̂ ∼ N()

– Theory ⇒ the distribution of a mle, θ̂, converges to a normal distribution as the
sample size increases

– Doesn’t ⇒ the distribution is normal when # observations is small-moderate.

• Profile likelihood intervals do not rely on asymptotic normality

Relationship between a hypothesis test and a confidence interval

• A useful applied statistics reminder: holds for any test and associated interval

• Consider a 1 parameter model, e.g. Y Poisson (λ)

– have mle, λ̂, e.g., 16.4 for the moist woodland oaks

– want to test Ho : λ0 = 15

– Likelihood ratio test statistic is C = −2
[
lnL(λ0)− lnL(λ̂)

]
– Reject Ho, λ0 = 15 at α = 0.05 when C > 3.84

– lnL(15) = 1.27, so accept Ho, p > 0.05 (p = 0.52, if you want to know)

– What about other null hypothesis values?

λ0 lnL C
16.4 -3.47 0 accept Ho

15.0 -4.10 1.27 accept Ho

14.5 -4.66 2.39 accept Ho

18.5 -4.71 2.48 accept Ho

19.0 -5.34 3.73 accept Ho

14.0 -5.42 3.90 reject Ho, p < 0.05
19.5 -6.08 5.21 reject Ho, p < 0.05

– illustrated in profile1.pdf

– 95% confidence interval for λ is all the λ0 values for which test ⇒ p > 0.05

– Need to find the λ0 values where p = 0.05. Those are the end points of the 95%
ci.

λ0 lnL C
14.015 -5.39 3.84
19.04 -5.39 3.84
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What about models with 2 or more parameters?

• Still want a ci for one parameter

– Aside: generalizes to confidence regions for two or more parameters simultane-
ously

• Example: redpoll data, 2 sampling occasions, same capture probability each time, p

• illustrated in profile2.pdf: lnL as function of (N, p) for redpoll data

• mle’s are N̂ = 90.5, p̂ = 0.32

• want ci for N

• Again, start with a test

– E.g., test Ho : N0 = 80

– This null hypothesis says nothing about p
need to compare lnL(N = 90.5, p = 0.32) to lnL(N = 80, p =??).

– Need to find the mle for p given N0 = 80.

– Sometimes have equation for this, usually have to numerically optimize

– Test statistic is C = −2
[
lnL(N0, p̂ | N0)− lnL(N̂ , p̂

]
– Null hypothesis has 1 “free” parameter, alternative has 2, so C has 1 df

– 95% ci: Find the set of N0 values where p > 0.05, i.e. C < 3.84/2

Connections between profile likelihood intervals and asymptotic normality (Wald) intervals

• Everything below is for 95% ci = α = 5% test, generalizes to other %’s

• Wald interval is based on a Z-test: reject H0 : N = N0 when Z = N̂−N0√
Var N̂

> 1.96

– Assumes that N̂ has a normal distribution

– Equivalent to a profile likelihood plot that is quadratic around N̂

• Profile likelihood interval is based on a likelihood ratio test (LRT)

– Does not assume a distribution for N̂

– The Chi-square distribution for C in a LRT is an asymptotic result

– But practical experience + theory ⇒ the Chi-square assumption is appropriate
for much smaller sample sizes than the normality assumption

What if we used logN as the parameter, not N?

• lnL is unchanged.
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• Invariance property of mle’s:

– lnL unchanged for a general transformation of parameters, not just log

• Profile likelihood plot usually looks different

• But, profile likelihood confidence intervals are identical

• Asymptotic normal intervals are not

Importance of number of recaptures

• Define µ = n1 n2

N
= E (m2 | n1, n2)

• c.v. of N̂ ≈ 1/
√
µ

• plug-in estimate is 1/
√
m2

More than two sampling occasions:

• Improves precision

• Allows considering multiple models for capture process

• Consider 3 occasions. Data can be summarized as 23 = 8 possible capture histories

• Do not observe the NNN history.

• Goal will be to estimate n000

Time
1 2 3 # animals
Y Y Y n111

Y Y N n110

Y N Y n101

Y N N n100

N Y Y n011

N Y N n010

N N Y n001

N N N n000

• Extends in obvious way to more than two capture occasions

– 2k possible histories for k occasions

– Don’t know # unseen, n0···0. All other counts are observed.

Otis models for capture process in a closed population:
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• Named by Dave Otis in his PhD thesis. Published in a wildlife monograph.

– Dave was ISU Coop unit leader before Bob Klaver, late 1990’s? to mid-2010’s?

• Three issues that could be included in a model for capture probability

– All concern p, the probability that an individual is captured on an occasion

– T: Variability between occasions (times)

– B: Behavioural variability

– H: Individual heterogeneity

• Individually or in combination

• Models named by subscripts

– M0: same capture probability for all sampling occasions

– Mt: capture probability differs between occasions

– Mb: behavioural response: capture probability differs between 1st capture and
subsequent ones (trap happy / trap shy behaviour)

– Mh: individuals have different capture probabilities

– and all combinations, Mtb, Mth, Mbh, Mtbh

– Heterogeneity between individuals (model names with h) makes life very difficult,
will discuss last

M0: constant capture probability

• lnL depends on 3 summary statistics

– t: # sampling occasions

– n. : total number of captures =
∑t
i=1 ni

– Mt+1 : total number of marked individuals after the last sampling occasion
= total number of animals seen at least once (perhaps more often)

• the important part of the log likelihood depends on these quantities (the sufficient
statistics), not any additional details, e.g., individual ni

lnL = logN !− log constant− log(N −Mt+1)! + n. log p+ t N − n. log(1− p)

• constant depends on the data, not on any parameter
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